On isolated, respectively consecutive large values of arithmetic functions
نویسندگان
چکیده
منابع مشابه
Common Values of the Arithmetic Functions
We show that the equation φ(a) = σ(b) has infinitely many solutions, where φ is Euler’s totient function and σ is the sum-of-divisors function. This proves a 50-year old conjecture of Erdős. Moreover, we show that there are infinitely many integers n such that φ(a) = n and σ(b) = n each have more than n solutions, for some c > 0. The proofs rely on the recent work of the first two authors and K...
متن کاملOn Locally Repeated Values of Certain Arithmetic Functions, IV
Let ω(n) denote the number of prime divisors of n and letÄ(n) denote the number of prime power divisors of n. We obtain upper bounds for the lengths of the longest intervals below x whereω(n), respectivelyÄ(n), remains constant. Similarly we consider the corresponding problems where the numbers ω(n), respectivelyÄ(n), are required to be all different on an interval. We show that the number of s...
متن کاملOn Locally Repeated Values of Certain Arithmetic Functions . Ii
which is nearly 1 if K is large . Thus if n and n+1 both satisfy (1 .3) and if we view v(n) and v(n+l) as "independent events", then the "probability" that (L2) holds should be at least (2K Vlog log n)-1 . Summing these probabilities would then give order of magnitude x1f log log x solutions n of (1 .2) with n-x, thus supporting the conjecture. A refinement of this heuristic argument even sugge...
متن کاملOn Large Values of L Holomorphic Functions
The solution to (1.1) gives the value of the Bergman kernel function associated to Ω (the kernel of the operator projecting L(Ω) orthogonally onto O(Ω)) at (p, p). If n = 1, it is a classical fact that MΩ(p) is bounded, from above and below, by a constant factor times dist(p, bΩ)−2. In higher dimensions, the geometry of bΩ influences the size of MΩ(p) in non-trivial ways. A general lower bound ...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 1994
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa-66-3-269-295